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The recent emergence of various spatially resolved transcrip-
tomic technologies has enabled gene-expression profiling 
with spatial localization information on tissues or cell cul-

tures. Such techniques include MERFISH1 and seqFISH2, which 
are based on single-molecule fluorescence in  situ hybridization 
(smFISH)3 and can measure hundreds of genes with subcellular 
spatial resolution; TIVA4, LCM5, Tomo-Seq6 and spatial transcrip-
tomics through spatial barcoding7, which are based on next-gen-
eration DNA sequencing and can measure tens of thousands of 
genes on single cells or on spatial locations consisting of a couple 
of hundred single cells; and targeted in situ sequencing (ISS)8 and 
FISSEQ9, which are based on in situ RNA sequencing and can mea-
sure up to thousands of transcripts with spatial information at a sin-
gle-cell resolution. These different spatially resolved transcriptomic 
techniques have made it possible to study the spatial organization of 
the transcriptomic landscape across tissue sections or within single 
cells, catalyzing new discoveries in many areas of biology10,11.

In spatially resolved transcriptomic studies, identifying genes 
that display spatial expression patterns, which we simply refer to as 
SE analysis, is an important first step toward characterizing the spa-
tial transcriptomic landscape in tissues. Effective SE analysis faces 
important statistical and computational challenges. From a statisti-
cal perspective, identifying SE genes requires proper modeling of 
the raw count data generated from both smFISH and sequencing-
based techniques. Unfortunately, the only two existing approaches 
for SE analysis, SpatialDE12 and Trendsceek13, transform count data 
into normalized data before analysis. As is well documented in many 
other omics sequencing studies14,15, analyzing normalized data can 
be suboptimal as this approach fails to account for the mean–vari-
ance relationship existed in raw counts, leading to a potential loss of 
power16. Besides direct modeling of count data, identifying SE genes 
also requires the development of statistical methods that can pro-
duce well-calibrated P values for control of type I errors. However, 
some existing methods for SE analysis, such as SpatialDE12, rely 
on asymptotic normality and minimal P-value-combination rules 
for constructing hypothesis tests. Consequently, these methods 

may fail to control for type I errors at the small P values that are 
essential for detecting SE genes at the transcriptome-wide signifi-
cance level, potentially leading to excessive false positives and/or 
substantial loss of power. From a computational perspective, while 
some spatial methods such as SpatialDE are based on computation-
ally efficient linear mixed models, some other spatial methods, in 
particular Trendsceek13, are built without a data-generative model 
and compute non-parametric test statistics through computation-
ally expensive permutation strategies. Consequently, analyzing even 
moderately sized spatial transcriptomics datasets with hundreds of 
genes across hundreds of spatial locations can be a daunting task.

Here we present spatial pattern recognition via kernels (SPARK), 
a method that addresses the statistical and computational chal-
lenges described above. It builds upon a generalized linear spatial 
model (GLSM)17,18 with a variety of spatial kernels to accommodate 
count data generated from smFISH or sequencing-based spatial 
transcriptomics studies. With a newly developed penalized quasi-
likelihood (PQL) algorithm19,20, SPARK is scalable to analyzing 
tens of thousands of genes across tens of thousands spatial loca-
tions. Importantly, SPARK relies on a mixture of χ2 distributions to 
serve as the exact test statistics distribution and takes advantage of a 
recently developed Cauchy combination rule21,22 to combine infor-
mation across multiple spatial kernels for calibrated P value calcu-
lation. As a result, SPARK properly controls for type I error at the 
transcriptome-wide level and is more powerful for identifying SE 
genes than existing approaches.

Results
Simulations. We provide an overview of SPARK in the Methods 
(technical details are provided in the Supplementary Notes and a 
method schematic shown in Fig. 1a). Unlike Trendsceek, SPARK 
has an underlying data-generative model, which can be viewed as an 
extension of SpatialDE. However, unlike SpatialDE, SPARK models 
count data directly and relies on a proper statistical procedure to 
obtain calibrated P values. A more detailed description of the dif-
ferences between these methods is provided in the Supplementary 
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Notes. We performed two sets of simulations to evaluate the per-
formance of SPARK and compared it with two existing approaches, 
SpatialDE and Trendsceek. Simulation details are provided in the 
Supplementary Notes.

In the first set of simulations, we found that, under the null 
condition, SPARK produced well-calibrated P values at the tran-
scriptome-wide significance levels (Fig. 1b). Some Trendsceek 
test statistics (for example, Markvario and Vmark) also produced 

reasonably calibrated P values, while others (for example, Emark 
statistics and markcorr statistics) yielded slightly conservative P val-
ues. By contrast, SpatialDE produced overly conservative P values  
(Fig. 1b). The failure of SpatialDE in controlling type I errors is pre-
sumably due to its use of an asymptotic χ2 distribution in place of 
an exact distribution for P value computation and/or its use of the 
ad hoc minimal P value combination rule. The P value calibration 
results under the null condition for different methods were consistent  
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across simulation settings and across a range of noise variance levels 
(Supplementary Fig. 1a). Because some methods failed to control 
for type I errors, we measured power on the basis of false-discovery 
rate (FDR) in the alternative simulations to ensure a fair compari-
son across methods. Under the alternatives, we found that SPARK 
was more powerful than the other two methods across a range 
of FDR cutoffs (Fig. 1c) and across a range of parameter settings 
(Supplementary Figs. 1b,c). The power performance of SPARK was 
followed by SpatialDE, while Trendsceek did not fare well in any of 
the alternative simulations.

Because of the extremely poor performance of Trendsceek, we 
performed a second set of simulations that were fully based on the 
original Trendsceek paper13. The comparison results on the second 
set of simulations were largely consistent with the results obtained 
from the first set of simulations. Specifically, under the null con-
dition, both SPARK and Trendsceek produced well-calibrated  
P values, while SpatialDE did not (Fig. 1d). Under the alternative 
simulations, SPARK was more powerful than the other two meth-
ods across a range of FDR cutoffs (Fig. 1e) in almost all parameter 
settings (Supplementary Fig. 2). The power performance of SPARK 
was followed by SpatialDE, while Trendsceek did not fare well, even 
though the power of Trendsceek was largely consistent with the 
original study13. Overall, the two sets of simulations suggest that 
SPARK produces well-calibrated P values while being more power-
ful than the other two methods in detecting SE genes.

Olfactory bulb data. We applied SPARK to analyze four published 
datasets, including two datasets obtained by spatial transcriptomics 
sequencing and two datasets obtained by smFISH (Methods). The 
first dataset was from the mouse olfactory bulb7, consisting of 
11,274 genes measured on 260 spots. Consistent with simulations, 
both SPARK and Trendsceek produced calibrated P values under 
the permuted null condition, while SpatialDE did not (Fig. 2a). 
SPARK also identified more SE genes as compared to SpatialDE 
and Trendsceek across a range of FDRs (Fig. 2b and Supplementary 
Fig. 3a). For example, at an FDR of 5%, SPARK identified 772 SE 
genes, which is approximately tenfold more than that detected by 
SpatialDE, which identified 67 (among which 62 overlapped with 
SPARK; Fig. 2b,f). Trendsceek was unable to detect any SE genes 
in the data, even though we tried ten different random seeds for  
the method.

We carefully examined the SE genes and found that most SE genes 
only detected by SpatialDE tended to have expression levels close to 
zero (Supplementary Fig. 3b) and appeared to locate on either one 
or two spots (Supplementary Fig. 3d), suggesting potentially false 
signals. By contrast, the SE genes only detected by SPARK generally 
have comparable expression levels to the SE genes detected by both 
methods (Supplementary Fig. 3b). To assess the quality of the SE 
genes identified by SPARK, we performed clustering on the 772 SE 
genes and obtained three major spatial expression patterns (Fig. 2e 
and Supplementary Fig. 3c): one representing the mitral cell layer 
(pattern I); one representing the glomerular layer (pattern II); and 
one representing the granular cell layer (pattern III). All patterns 
were clearly visualized via three previously known marker genes for 
the three layers, Doc2g, Kctd12 and Penk7 (Fig. 2d). We listed 20 
random genes only detected by SPARK as representative examples 
(Supplementary Fig. 4). Almost all these genes showed clear spatial 
expression patterns that were cross validated by in situ hybridiza-
tion in the Allen Brain Atlas (Fig. 2c), confirming the higher power 
of SPARK.

We provide three additional lines of evidence to validate the 
SE genes detected by SPARK. First, we examined the highlighted 
marker genes in the olfactory system presented in the original 
study7. The list of highlighted marker genes, which is not necessar-
ily the complete list of all marker genes, at least represents the likely 
set of genes that are both biologically important and detectable in 

the data. Importantly, SPARK detected eight of ten such highlighted 
genes. SpatialDE only detected three and Trendsceek detected none 
(Supplementary Fig. 5d). Second, we obtained a list of 2,030 cell-
type-specific marker genes identified in a recent single-cell RNA 
sequencing study in the olfactory bulb23. Reassuringly, 55% of the 
unique SE genes identified by SPARK were in the marker list, while 
only 20% of the unique SE genes identified by SpatialDE were in 
the same list (Fig. 2g). Third, we obtained a list of 3,262 genes that 
are related to the olfactory system in the Harmonizome database24. 
Again, 26% of the unique SE genes identified by SPARK were in the 
Harmonizome list, while only 20% of the unique SE genes identified 
by SpatialDE were in the same list (Fig. 2g). These three additional 
validation analyses provide support for the higher power of SPARK.

Finally, we performed functional enrichment analyses of SE genes 
identified by SPARK and SpatialDE (Methods). A total of 1,023 
Gene Ontology (GO) terms (Fig. 2h) and 79 Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways were enriched in the 
SE genes identified by SPARK at an FDR of 5%, while only 87 
GO terms (overlap = 64; Supplementary Fig. 5a) and two KEGG 
pathways (overlap = 2; Supplementary Fig. 5b) were enriched in 
the SE genes identified by SpatialDE (Supplementary Table 1 and 
Supplementary Fig. 5c). Many enriched GO terms or KEGG path-
ways identified only by SPARK are directly related to synaptic 
organization and olfactory bulb development. Examples include 
olfactory lobe development (GO 0021988; SPARK P = 5.81 × 10−3, 
SpatialDE P = 1.21 × 10−1) and oxytocin signaling pathway (KEGG 
mmu04921; SPARK P = 1.59 × 10−9, SpatialDE P = 2.15 × 10−1) for 
modulating olfactory processing25. An in-depth enrichment analy-
sis using SE genes in patterns I–III separately provided additional 
biological insights, revealing the critical role of synaptic organiza-
tion for the mitral cell layer, the importance of cell junction and 
synaptic connectivity for the nerve layer, as well as the importance 
of dendritic morphogenesis and synaptic–dendritic plasticity for 
the granular layer (Supplementary Results, Supplementary Fig. 5 
and Supplementary Table 1). Overall, the newly identified GO term 
and KEGG pathway enrichment highlight the benefits of running 
SE analysis with SPARK.

Breast cancer data. The second dataset was a study of human 
breast cancer biopsies7, which contained 5,262 genes measured on 
250 spots. Again, both SPARK and Trendsceek produced calibrated 
P values under the permuted null condition, while SpatialDE did 
not (Fig. 3a). SPARK also identified more SE genes as compared 
to SpatialDE and Trendsceek across a range of FDRs (Fig. 3b and 
Supplementary Fig. 6a). For example, at an FDR of 5%, SPARK 
identified 290 SE genes, which is approximately threefold more than 
that detected by SpatialDE, which identified 115 (among which 85 
overlapped with SPARK; Fig. 3b,d). By contrast, Trendsceek only 
identified at most 15 SE genes. Again, SE genes only detected by 
SpatialDE tend to have low expression levels while the SE genes 
detected only by SPARK generally have comparable expression  
levels to the SE genes detected by both methods (Supplementary 
Fig. 6b). We listed 20 random genes only detected by SPARK as rep-
resentative examples (Supplementary Fig. 7). Most of these genes 
show clear spatial expression patterns, confirming the higher power 
of SPARK.

We provide three additional lines of evidence to validate the 
SE genes detected by SPARK. First, we examined the 14 cancer-
related genes highlighted in the original study7. SPARK detected 
ten of them, SpatialDE detected seven and Trendsceek detected 
two (Supplementary Fig. 6e). Both SpatialDE and Trendsceek 
missed three well-known cancer-related genes: SCGB2A2, KRT17 
and MMP14. Second, we collected a list of 1,144 genes previously 
known to be relevant to breast cancer in the CancerMine database26. 
Fourteen percent of SE genes uniquely identified by SPARK were 
in the list while only 10% identified by SpatialDE were in the list  
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(Fig. 3c). For example, the well-known proto-oncogene ERBB2 gene 
that has a vast amount of previous literature support was only iden-
tified by SPARK (Fig. 3e). Third, we collected a list of 3,538 genes 
that are relevant to breast cancer from the Harmonizome database24. 
Again, 44% of SE genes uniquely identified by SPARK were in the 
list while only 37% by SpatialDE were in the list (Fig. 3c). Overall, 
these three additional lines of evidence provide support for the 
higher power of SPARK.

Finally, we performed functional enrichment analysis. At an 
FDR of 5%, SPARK identified 542 GO terms and 20 KEGG path-
ways (Fig. 3f and Supplementary Table 2) while SpatialDE iden-
tified 266 GO terms (overlap = 191) and three KEGG pathways 
(overlap = 3; Supplementary Figs. 6c,d and Supplementary Table 2). 
Many enriched gene sets discovered only by SPARK are related to 
extracellular matrix organization and immune responses (Fig. 3e, 

Supplementary Results, Supplementary Fig. 6f and Supplementary 
Table 2), highlighting their importance in cancer development  
and metastasis.

Hypothalamus data. The third dataset is a MERFISH dataset col-
lected on the preoptic area of the mouse hypothalamus27. The data 
contains 160 genes measured on 4,975 single cells (Fig. 4c). Of 
these genes 155 of 160 were selected in the original study as they 
are markers of distinct cell populations or are relevant to various 
neuronal functions of the hypothalamus. Besides these likely true-
positive genes, another five blank control genes were also included 
in the original study to serve as negative controls. In the analysis, 
we found that SPARK produced calibrated P values under the per-
muted null condition, while SpatialDE did not (Fig. 4a; Trendsceek 
was not applied to the permuted null condition owing to its heavy 
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computational burden). The quantile–quantile plots of P values 
from different methods also suggest that both SpatialDE and SPARK 
are more powerful than Trendsceek (Supplementary Fig. 8a).  
Because this data contains five negative control genes and 155 likely 
positive genes, we directly compared the power of different meth-
ods on the basis of the number of SE genes identified given a fixed 
number of negative control genes identified (Fig. 4b). The power 
comparison results again support a higher power of SPARK. For 
example, conditional on only one blank control gene being detected 
(that is, one false positive), SPARK identified 145 SE genes, which 
is six more than the number detected by SpatialDE, which identi-
fied 139 (among which 138 overlapped with SPARK; Fig. 4b and 
Supplementary Fig. 8b). Both SPARK and SpatialDE outperformed 
Trendsceek, which identified 108 SE genes (among which 103 over-
lapped with SPARK). A careful examination suggests that almost 
all SE genes identified by SPARK show clear spatial expression pat-
terns as one would expect: nine major cell classes in hypothalamus 
(Fig. 4d and Supplementary Fig. 8c) along with nine marker genes27 
(Supplementary Fig. 8d) are shown as examples. Importantly, 
all three SE genes only identified by SPARK (Avpr1a, Chat and 
Nup62cl) are closely related to the neuronal functions of the  
hypothalamus28–30 (Supplementary Results), highlighting the power 
of SPARK.

Hippocampus data. The final dataset was a small seqFISH data-
set with 249 genes measured on 131 single cells in the mouse hip-
pocampus31 (Supplementary Fig. 9a). These 249 genes include 214 
genes that were selected in the original study31 as transcription fac-
tors and signaling pathway components and 35 remaining genes 
that were previously known markers of cell identity. In the analysis, 
we found that both SPARK and Trendsceek produced calibrated  
P values under the permuted null condition while SpatialDE 
yielded conservative P values (Supplementary Fig. 9b). SPARK 
again identified more SE genes as compared to SpatialDE and 
Trendsceek across a range of FDRs (Supplementary Figs. 9c,d). 
For example, at an FDR of 5%, SPARK identified 17 SE genes. 
SpatialDE and Trendsceek identified 11 (all overlap with SPARK) 
and four (one overlap with SPARK) SE genes, respectively 
(Supplementary Fig. 9e). The 11 SE genes identified by both 
SpatialDE and SPARK showed clear spatial expression patterns 
(Supplementary Fig. 9f), as did the six SE genes identified only by 
SPARK (Supplementary Fig. 9g). The three SE genes only detected 
by Trendsceek tended to express uniformly in most cells and show 
less apparent spatial patterns (Supplementary Fig. 9h). The higher 
number and apparent spatial expression pattern of SE genes iden-
tified by SPARK support its higher power. We carefully examined 
all six SE genes that were only identified by SPARK. Four of them 
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pathway enrichment analysis on 290 SE genes obtained by SPARK on the basis of an FDR cutoff of 0.05. Dashed line represents a P value cutoff of 0.05. 
Gene sets are colored by categories: GO biological process (blue), GO molecular function (purple) and GO cellular component (yellow).
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are markers of cell identity: Foxo1 and Slc17a8 for glutamatergic 
neurons; Igtp for GABAergic neurons; and Opalin for oligoden-
drocytes32. All of them are closely related to neuronal functions in 
the hippocampus. For example, the spatial expression pattern of 
Foxo1 detected by SPARK is consistent with the previous obser-
vation that it is highly enriched in the ventral CA3 area of the 
hippocampus, as well as in the amygdalohippocampal region33,34. 
Foxo1 is activated in hippocampal progenitor stem cells after cor-
tisol exposure to prenatal stress and mediates the negative effect 
of stress on neurogenesis35. Besides these four marker genes, the 
remaining two genes, Pou4f1 and Gfi1, encode neural transcrip-
tion factors and play important roles in the development of the 
sensory nervous system36,37. These important genes, which are 
missed by other methods, again highlight the power of SPARK.

Discussion
We present a new method, SPARK, for identifying SE genes in 
spatially resolved transcriptomic studies. In comparison to exist-
ing approaches, SPARK produces well-calibrated P values and 
yields more statistical power. SPARK is also easily applicable to 
three-dimensional datasets such as STARmap38 or even higher- 
dimensional datasets where other coordinates (for example, time) 
are recorded.

SPARK incorporates a data-generative model and relies on a 
model-based hypothesis-testing framework for detection of spa-
tial patterns. The data-generative model in SPARK distinguishes 
it from previous spatial data-exploration tools that rely on var-
iograms or semivariograms for visualizing spatial autocorrela-
tion patterns39,40. The model-based hypothesis test in SPARK also 
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distinguishes it from previous simple spatial test statistics such as 
Moran’s I and Geary’s C41,42 when detecting spatial autocorrelation 
patterns. To illustrate the benefits of SPARK over previous simple 
spatial test statistics, we have applied Moran’s I test to all four real 
datasets examined here. We found that the P values from Moran’s I 
under the permuted null condition were highly inflated, presum-
ably owing to its use of asymptotic normality for P value compu-
tation (Supplementary Fig. 10a). We also found that the power of  
Moran’s I was lower than SPARK across all data (Supplementary 
Figs. 10b–d), likely owing to its inability to detect spatial patterns 
other than simple autocorrelations.

SPARK directly models raw counts to account for the mean–vari-
ance dependency observed in the spatial data (Supplementary Fig. 
11a), resulting in an appreciable power gain. Such a power gain is 
especially apparent in data with low counts, such as the first two 
spatial transcriptomics datasets we examined here. However, we 
acknowledge that the power gain brought by count modeling may 
be small in datasets with high counts (for example, MERFISH and 
seqFISH data), as a normal distribution can often approximate high 
counts as well as an overdispersed Poisson distribution. Therefore, 
we developed a Gaussian version of SPARK (Supplementary Notes) 
to ensure more robust modeling and scalable computation for 
data with high counts. The Gaussian version of SPARK produced 
well-calibrated P values in all permuted data (Supplementary  
Fig. 11b), had comparable power to the Poisson version of SPARK for 
data with high counts, though was inferior in data with low counts 
(Supplementary Fig. 11c). Importantly, the Gaussian version of 
SPARK is much more computationally efficient than its Poisson coun-
terpart. While the Poisson version of SPARK is fast (Supplementary 
Table 3 and Supplementary Fig. 12), the Gaussian version of SPARK 
may represent an attractive alternative for analyzing large datasets 
collected from emerging techniques such as Slide-seq43.

Finally, several potential extensions exist for SPARK. For exam-
ple, we have aggregated P values across different kernels to ensure 
stable performance across a range of possible spatial expression 
patterns. However, some kernels may work preferentially well for 
certain datasets (Supplementary Fig. 13), for certain spatial patterns 
and/or for certain genes. Subsequently, it could be beneficial to esti-
mate the weights of the ten kernels for each gene separately or to 
estimate them in an empirical Bayes fashion by borrowing spatial 
expression information across genes. It could also be beneficial to 
incorporate prior knowledge of the tissue structure into the kernel 
functions to facilitate the detection of genes that are specifically 
expressed in known structures. These future extensions will likely 
improve the power of SPARK further.
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Methods
SPARK: model and algorithm. We aimed to model gene-expression data collected 
by various high-throughput spatial sequencing techniques, such as smFISH and 
spatial transcriptomics technology. These spatial techniques simultaneously 
measure gene-expression levels of m different genes on n different spatial locations 
on a tissue of interest, which we simply refer to as samples. The gene-expression 
measurements are often obtained in the form of counts: they are collected either 
as the number of barcoded mRNA for any given transcript in a single cell through 
smFISH-based techniques or as the number of sequencing reads mapped to any 
given gene through sequencing-based spatial techniques. The number of genes, 
m, varies across different spatial sequencing techniques and often ranges from a 
couple hundred (in the case of smFISH) to the whole transcriptome (in the case  
of spatial transcriptomics technology). The sample composition varies across 
different spatial sequencing techniques and can consist of either a single cell  
(in the case of smFISH) or a small set of approximately homogenous single cells 
residing in a small region of the sampled location known as a spot (in the case of 
spatial transcriptomics technology). The sampled locations have known spatial 
coordinates that are recorded during the experiment. These sampled locations can 
either be considered as random (in the case of smFISH; as expression is measured 
on single cells that are randomly scattered across the tissue or culture space) or 
are predetermined by researchers before the experiment (in the case of spatial 
transcriptomics technology). We denote si = (si1,si2) as the spatial coordinates that 
is, location index) for ith sample, with i ∈ (1,…,n). These spatial coordinates vary 
continuously over a two-dimensional space R2, or si ∈ R2. While we only focus on 
the case where samples are collected on a two-dimensional space of a tissue or 
culture layout, our model and method are general, and therefore are capable of 
handling three-dimensional cases where the depth of the sample location in the 
tissue can be recorded or handling cases with even higher dimensions where other 
coordinates (for example, time) are also recorded.

Our primary goal is to detect genes whose expression levels display spatial 
patterns with respect to the sample locations. We simply refer to these genes as SE 
genes (genes with spatial expression pattern), in parallel to DE genes (differentially 
expressed genes) used in other settings. To identify SE genes, we examine one 
gene at a time and model its expression level across sampled locations using a 
generalized linear spatial model (GLSM)44,45. GLSM, also known as the generalized 
linear geostatistical model or the spatial generalized linear mixed model, is a 
generalized linear mixed model that directly models non-Gaussian spatial data 
and uses random effects to capture the underlying stationary spatial process. 
GSLM has been commonly used for interpolation and prediction of spatial data, 
with applications in spatial disease mapping and spatial epidemiologic studies46,47. 
However, unlike these previous GLSM development, we focused on developing a 
hypothesis-testing framework for GLSM. Here, for the gene of focus, we denote 
yi(si) as the gene-expression measurement in terms of counts for the ith sample. We 
denote xi(si) as a k vector of covariates that include a scalar of one for the intercept 
and k − 1 observed explanatory variables for the ith sample. These explanatory 
variables could contain batch information, cell-cycle information, or other 
information that are important to adjust for during the analysis. We denote Ni(si) 
as the normalization factor for the ith sample. Here we set Ni(si) as the summation 
of the total number of counts across all genes for the sample as our main interest 
is analyzing the relative gene-expression level. Other choices of Ni(si) are possible, 
for example, Ni(si) can be set to one if the main interest is in the absolute gene-
expression level. We consider modeling the observed expression count data with an 
overdispersed Poisson distribution

yi sið Þ  Poi Ni sið Þλi sið Þð Þ; i ¼ 1; 2;    ; n

where λi(si) is an unknown Poisson rate parameter that represents the underlying 
gene-expression level for the ith sample. In the spatial setting, λi(si) can also be 
viewed as the unobserved spatial random process occurring at location si. We 
model the log scale of the latent variable λi(si) as a linear combination of  
three terms

log λi sið Þð Þ ¼ xi sið ÞTβþ bi sið Þ þ ϵi

where β is a k vector of coefficients that include an intercept representing the mean 
log-expression of the gene across spatial locations together with k − 1 coefficients 
for the corresponding covariates; εi is the residual error that is independently and 
identically distributed from N(0,τ2) with variance τ2; and bi(si) is a zero-mean, 
stationary Gaussian process modeling the spatial correlation pattern among spatial 
locations

b sð Þ ¼ b1ðs1Þ; b2ðs2Þ;    ; bnðsnÞð ÞT MVN 0; τ1KðsÞð Þ;

where the covariance K(s) is a kernel function of the spatial locations s = (s1,…,sn)T,  
with the ijth element being K(si,sj); τ1 is a scaling factor of the covariance 
kernel; and MVN denotes a multivariate normal distribution. We will discuss 
the choice of the kernel function in more detail below. In the above model, 
the covariance for the latent variables log(λ(s)) is Σ ¼ τ1K sð Þ þ τ2I

I
, where 

λ sð Þ ¼ λ1ðs1Þ; λ2ðs2Þ;    ; λnðsnÞð ÞT
I

 and I is an n-dimensional identity matrix.  
In spatial statistics, τ1 is commonly referred to as the partial sill, which effectively 

measures the expression variance in log(λi(si)) captured by spatial patterns or 
spatial location information; τ2 is commonly referred to as the nugget, which 
effectively measures the expression variance in log(λi(si)) owing to random noise 
independent of spatial locations.

In the GLSM defined above, testing whether a gene shows a spatial expression 
pattern can be translated into testing the null hypothesis ‘H0: τ1 = 0’. The statistical 
power of such a hypothesis test will inevitably depend on how well the spatial 
kernel function K(s) matches the true underlying spatial pattern displayed by the 
gene of interest. For example, a periodic kernel will be particularly useful to detect 
expression pattern that is periodic across the location space, while a Gaussian 
kernel will be particularly useful to detect expression pattern that is clustered 
in focal areas. The true underlying spatial pattern for any gene is unfortunately 
unknown and may vary across genes. To ensure robust identification of SE genes 
across various spatial patterns, we consider using a total of ten different spatial 
kernels, including five periodic kernels with different periodicity parameters 
and five Gaussian kernels with different smoothness parameters. The detailed 
construction of these kernels is described in Supplementary Notes. These ten 
kernels cover a range of possible spatial patterns that are observed in common 
biological datasets (Supplementary Fig. 13e) and are used as default kernels in our 
software implementation for all analysis results presented here. However, we note 
that our method and software implementation can easily handle many other kernel 
functions or incorporate a different number of kernel functions as the users see fit.

We fit the above GLSM and test the null hypothesis using the ten kernels one 
at a time. Parameter estimation and hypothesis testing in GLSM is notoriously 
difficult, as the GLSM likelihood consists of an n-dimensional integral that 
cannot be solved analytically. To overcome the high-dimensional integral and 
enable scalable estimation and inference with GLSM, we develop an approximate-
inference algorithm that is based on the PQL approach20,48. The algorithmic details 
are provided in the Supplementary Notes. With parameter estimates from the 
PQL-based algorithm, we compute a P value for each of the ten kernels using the 
Satterthwaite method49 on the basis of score statistics, which follow a mixture of 
χ2 distributions. Afterward, we combine these ten P values through the recently 
developed Cauchy P value combination rule21. To apply the Cauchy combination 
rule, we convert each of the ten P values into a Cauchy statistic, aggregate the ten 
Cauchy statistics through summation and convert the summation back to a single 
P value on the basis of the standard Cauchy distribution. The Cauchy rule takes 
advantage of the fact that a combination of Cauchy random variables also follows 
a Cauchy distribution regardless of whether these random variables are correlated 
or not21,22. Therefore, the Cauchy combination rule allows us to combine multiple 
potentially correlated P values into a single P value without losing control over 
type I errors. After obtaining m P values across m genes, we control for FDR using 
the Benjamini–Yekutieli procedure, which is effective under arbitrary dependence 
across genes50.

We refer to the above method as the Poisson version of SPARK, and it is the 
main method used in the present study. Besides the Poisson version, we have also 
developed a Gaussian version of SPARK for modeling normalized spatial data 
(Supplementary Notes). Both versions of SPARK are implemented in the same 
R package and are capable of computing over multiple threads, with underlying 
efficient C and C++ code linked through Rcpp. The software SPARK,  
together with all analysis code used in the present study for reproducing  
the results presented in the manuscript, are freely available at  
www.xzlab.org/software.html.

Clustering SE genes detected by SPARK. We summarized the spatial expression 
patterns detected by SPARK by dividing SE genes into different categories. To do 
so, we first applied variance-stabilizing transformation to the raw count data12 and 
obtained the relative gene-expression levels through adjusting for the log-scale 
total read counts. We then used the hierarchical agglomerative clustering algorithm 
in the R package amap (v.0.8–17) to cluster identified SE genes detected by SPARK 
into five groups. Afterward, we summarized the gene-expression patterns by using 
the expression level of the five cluster centers (Supplementary Figs. 3e,f). In the 
hierarchical clustering, we set the two optional parameters in the R function to be 
Euclidean distance and Ward’s criterion, respectively.

Gene sets and functional enrichment analysis. For each of the first two real 
datasets, we obtained lists of genes that can be used to serve as unbiased validation 
for the SE genes identified by different methods. Specifically, for the olfactory bulb 
data, we obtained a gene list that is based on the three layers (mitral, glomerular 
and granule) of the main olfactory bulb listed in the Harmonizome database 
(https://amp.pharm.mssm.edu/Harmonizome/). For the breast cancer data, we 
obtained a gene list from the Harmonizome database that consists of breast-
cancer-related genes from six different datasets (OMIM gene–disease associations, 
PhosphoSitePlus phosphosite–disease associations, DISEASES text-mining 
gene–disease association evidence scores, GAD gene–disease associations and 
GWAS catalog SNP–phenotype associations). For the breast cancer data, we also 
obtained another gene list from the CancerMine database (http://bionlp.bcgsc.ca/
cancermine/) that consists of genes related to breast cancer that are either cancer 
drivers, oncogenes or tumor suppressors. We used these gene lists to validate the 
SE genes identified by different methods.

http://www.xzlab.org/software.html
https://amp.pharm.mssm.edu/Harmonizome/
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We also performed the functional enrichment analysis of significant SE genes 

identified by SPARK and SpatialDE with GO terms and KEGG pathways. We 
performed all enrichment analyses using the R package clusterProfiler51 (v.3.12.0). 
In the package, we used the default ‘BH’ method for P value multiple-testing 
correction and set the default number of permutations to be 1,000.

Spatial transcriptomics datasets. We downloaded two spatial trans 
criptomics datasets from Spatial Transcriptomics Research (http://www.
spatialtranscriptomicsresearch.org). These two datasets include mouse olfactory 
bulb data and human breast cancer data. These data consist of gene-expression 
measurements in the form of read counts that are collected on a number of spatial 
locations known as spots. Following the SpatialDE paper, we used the ‘MOB Replicate 
11’ file for mouse olfactory bulb data, which contains 16,218 genes measured on  
262 spots, and the ‘Breast Cancer Layer 2’ file for the breast cancer data, which 
contains 14,789 genes measured on 251 spots. We filtered out genes that are expressed 
in less than 10% of the array spots and selected spots with at least ten total read 
counts. With these filtering criteria, we analyzed a final set of 11,274 genes on  
260 spots in the mouse olfactory bulb data and 5,262 genes on 250 spots in the breast 
cancer data. In the analysis, we performed permutations to construct an empirical null 
distribution of P values for each method by permuting the spot coordinates ten times. 
Afterward, we examined control of type I errors by the different methods on the basis 
of the empirical null distribution of P values.

MERFISH dataset. We obtained the MERFISH dataset collected on the mouse 
preoptic region of the hypothalamus from Dryad27,52 (https://datadryad.org/stash/
dataset/doi:10.5061/dryad.8t8s248). We used the slice at Bregma + 0.11 mm from 
animal 18 for analysis, as it contains all 160 genes measured on the largest number 
of single cells (5,665) across all nine cell classes. Among the 160 genes, 155 of 
them were preselected in the original study as either known markers for major 
cell classes or are relevant to various neuronal functions of the hypothalamus 
(for example, some are neuropeptides and some are neuromodulator receptors). 
Most of these 155 genes are expected to have spatial expression pattern in the 
hypothalamus. The remaining five genes are blank control genes without a 
spatial expression pattern in the hypothalamus and thus can serve as negative 
controls. The downloaded data contain normalized gene-expression values, 
which were previously computed as read counts divided by either the cell 
volume (combinatorial smFISH) or arbitrary fluorescence units per µm3 (non-
combinatorial, sequential FISH) and further scaled by 1,000. To obtain the raw 
count data, we rescaled the expression values by first multiplying by 1,000, adjusted 
for cell volume and then converted the rescaled value into integers by taking 
the ceiling over the rescaled data. After removing the ambiguous cells that were 
identified as putative doublets in the original data, we analyzed a final set of 160 
genes on 4,975 cells. In the analysis, we permuted the location coordinates 100 
times to construct an empirical null distribution, with which we examined control 
of type I errors by the different methods.

SeqFISH dataset. We obtained the seqFISH dataset collected on the mouse 
hippocampus from the supplementary file of the original paper31 (https://www.
cell.com/cms/10.1016/j.neuron.2016.10.001/attachment/759be4dc-04a6-4a58-
b6f6-9b52be2802db/mmc6.xlsx). Following the SpatialDE paper, we extracted 
the field 43 dataset for analysis. The data are in the form of raw count data for 
249 genes measured in 257 cells with known spatial location information. Among 
249 measured genes, 214 were selected from a list of transcription factors and 
signaling pathway components and the remaining 35 were selected from cell 
identity markers31. Following Trendsceek13 and the original study31, we filtered out 
cells with x- or y-axis values falling outside the range of 203–822 pixels to address 
border artifacts. After filtering, we analyzed a final set of 249 genes measured 
on 131 cells. In the analysis, we permuted the location coordinates 100 times to 
construct an empirical null distribution, with which we examined control of type I 
errors by the different methods.

Comparison of methods. We compared SPARK with three existing methods for 
detecting genes with spatial expression patterns. All these methods are designed 
for normalized data. The first method is Trendsceek (R package trendsceek; v.1.0.0; 
downloaded on 20 December 2018). We followed the same procedure described 
in the original Trendsceek paper13 to filter and normalize count data. Specifically, 
for the two spatial transcriptomics data, we excluded genes that were expressed 
in less than three spots and excluded spots that contained less than five read 
counts. We then performed log10-transformation on raw count data (by adding 
a pseudocount of one to avoid log-transformation of zero values). For the real 
data analysis, we focused on analyzing the top 500 most variable genes to ensure 
sufficient power as well as computational feasibility as described in the Trendsceek 
paper. For the permuted data, we analyzed all the genes to construct an empirical 
null distribution. For seqFISH data, we first removed boundary cells as described 
in the previous section. Afterward, following the Trendsceek recommendation, for 
each gene in turn, we performed a one-sided winsorization procedure to remove 
outlier effects by setting the first four largest values to be the fifth largest value. 
We then applied log10-transformation on the count data to obtain normalized 
expression values. For MERFISH data, we performed log10-transformation on raw 

count data and included all genes for analysis. Besides filtering and normalization, 
Trendsceek relies on permutation to compute P values. Here we set the number 
of permutations to be the default of 10,000. In addition, because the results of 
Trendsceek depend on the seeds used in the software, we analyzed each dataset 
using ten different seeds and reported results on the basis of the seed that yielded 
the highest number of discoveries, thus, the power estimates of Trendsceek are 
likely upwardly biased. One disadvantage of Trendsceek is its slow computation: 
it takes over 48 h to analyze one single gene in the mouse hypothalamus data. 
Therefore, in that data, we only applied the Trendsceek to the real data but not 
to the permuted data. Following the Trendsceek paper, we used the Benjamini–
Hochberg procedure implemented in Trendsceek software to obtain an adjusted P 
value (that is, FDR). With the adjusted P value, we declared an SE gene significant 
if at least one of the four adjusted P value outputs from (the four tests of) 
Trendsceek was below the threshold of 0.05.

The second method we used for comparison was SpatialDE (Python package; 
v.1.1.0; downloaded on 12 December 2018). For the mouse olfactory data 
and human breast cancer data, we directly used the analysis code provided by 
the SpatialDE authors on Github (https://github.com/Teichlab/SpatialDE) to 
perform analysis. For the mouse hippocampus data, we applied their analysis 
code to the border-artifacts-adjusted dataset described above to avoid detection 
of border artifacts and ensure fair comparison across methods. For the mouse 
hypothalamus data, we also directly applied the MERFISH analysis code described 
in the SpatialDE paper. Following the SpatialDE paper, we declared an SE gene 
as significant if the output q value (that is, FDR) from SpatialDE was below the 
threshold of 0.05.

The last method used for comparison was Moran’s I test. We used the function 
moran.test implemented in the R package spdep (v.1.1.2) for analysis. The results 
on Moran’s I are presented only in the Discussion.

data availability
This study made use of four publicly available datasets. These include the  
mouse olfactory bulb and human breast cancer data http://www. 
spatialtranscriptomicsresearch.org), the MERFISH data (https://datadryad.org/
stash/dataset/doi:10.5061/dryad.8t8s248) and the SeqFISH data (https://www.cell. 
com/cms/10.1016/j.neuron.2016.10.001/attachment/759be4dc-04a6-4a58-
b6f6-9b52be2802db/mmc6.xlsx). In addition, all raw data and processed data used 
for analysis are also available at https://github.com/xzhoulab/SPARK.

Code availability
All source code used in our experiments have been deposited at http://www.xzlab. 
org/software.html.
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